PUBLICATIONS Q1-Q4 2021

Hydrogels, Biofilms, Spheroids and many more applications were measured with our Piuma and Chiaro nanoindenters. This year alone, we were featured in 86 new publications in various scientific journals. The number of papers are projected to grow significantly each year.  

The Impact Factor (IF) are based on the 5 journals that have the highest ranking within this list.  

  1. Nature – Nature Journal IF (49.9); Nature Chemical Biology IF (15.04); Nature Communications (14.9) 
  2. Bioactive Materials (14.12) 
  3. Chemical Engineerning Journal (13.07) 
  4. Biomaterials  – IF (12.4) 
  5. Acta Biomaterialia – IF (8.9) 

Find the list of 2021 publications (Q1 Q4) to see how Piuma and Chiaro Nanoindenters were used for the categorized applications. 

Biofilms 

Films 

Pereira, D. de M., Schumacher, M., & Habibović, P. (2021). Cobalt-containing Calcium Phosphate Induces Resorption of Biomineralized Collagen by Human Osteoclasts [Preprint]. In Review. https://doi.org/10.21203/rs.3.rs-136339/v1 

Wang, Y., An, B., Xue, B., Pu, J., Zhang, X., Huang, Y., Yu, Y., Cao, Y., & Zhong, C. (2021). Living materials fabricated via gradient mineralization of light-inducible biofilms. Nature Chemical Biology, 1–9. https://doi.org/10.1038/s41589-020-00697-z –  

Shin, S., Li, M., Wu, X., Saha, A., & Bae, J. (2021). Role of soft-gel substrates on bouncing–merging transition in drop impact on a liquid film. Soft Matter17(3), 571–579. https://doi.org/10.1039/D0SM01675F 

1) Hu, M., Jia, F., Huang, W.-P., Li, X., Hu, D.-F., Wang, J., Ren, K.-F., Fu, G.-S., Wang, Y.-B., & Ji, J. (2021). Substrate stiffness differentially impacts autophagy of endothelial cells and smooth muscle cells. Bioactive Materials6(5), 1413–1422. https://doi.org/10.1016/j.bioactmat.2020.10.013  –  

Li, T., Xie, R., Chen, W., Schofield, A. B., & Clegg, P. S. (2021). Complex High-Internal Phase Emulsions that can Form Interfacial Films with Tunable Morphologies. Langmuir37(32), 9802–9808. https://doi.org/0.1021/acs.langmuir.1c01355 

Coatings 

Albers, P. T. M., Laven, J., van der Ven, L. G. J., van Benthem, R. A. T. M., de With, G., & Esteves, A. C. C. (2021). Aqueous friction behavior of swollen hydrophilic poly(ethylene glycol)-based polyurethane coatings. Journal of Materials Science

Chan, D., Chien, J.-C., Axpe, E., Blankemeier, L., Baker, S. W., Swaminathan, S., Piunova, V. A., Zubarev, D. Y., Maikawa, C. L., Grosskopf, A. K., Mann, J. L., Soh, H. T., & Appel, E. A. (2021). Combinatorial Polyacrylamide Hydrogels for Preventing Biofouling on Implantable Biosensors (p. 2020.05.25.115675). https://doi.org/10.1101/2020.05.25.115675 

Cardiovascular 

Bao, H., Li, Z.-T., Xu, L.-H., Su, T.-Y., Han, Y., Bao, M., Liu, Z., Fan, Y.-J., Lou, Y., Chen, Y., Jiang, Z.-L., Gong, X.-B., & Qi, Y.-X. (2021). Platelet-Derived Extracellular Vesicles Increase Col8a1 Secretion and Vascular Stiffness in Intimal Injury. Frontiers in Cell and Developmental Biology9https://doi.org/10.3389/fcell.2021.641763\ 

Contractile force measurements 

Cardiac Cells 

Shah, P. P., Lv, W., Rhoades, J. H., Poleshko, A., Abbey, D., Caporizzo, M. A., Linares-Saldana, R., Heffler, J. G., Sayed, N., Thomas, D., Wang, Q., Stanton, L. J., Bedi, K., Morley, M. P., Cappola, T. P., Owens, A. T., Margulies, K. B., Frank, D. B., Wu, J. C., … Jain, R. (2021). Pathogenic LMNA variants disrupt cardiac lamina-chromatin interactions and de-repress alternative fate genes. Cell Stem Cellhttps://doi.org/10.1016/j.stem.2020.12.016  

Cartilage  

Native Tissues 

Lawrence, E. A., Aggleton, J., van Loon, J., Godivier, J., Harniman, R., Pei, J., Nowlan, N., & Hammond, C. (2021). Exposure to hypergravity during zebrafish development alters cartilage material properties and strain distribution. Bone & Joint Research10(2), 137–148. https://doi.org/10.1302/2046-3758.102.BJR-2020-0239.R1  

Patel, J. M., Loebel, C., Saleh, K. S., Wise, B. C., Bonnevie, E. D., Miller, L. M., Carey, J. L., Burdick, J. A., & Mauck, R. L. (n.d.). Stabilization of Damaged Articular Cartilage with Hydrogel-Mediated Reinforcement and Sealing. Advanced Healthcare Materialsn/a(n/a), 2100315. https://doi.org/10.1002/adhm.202100315 

Tissue Engineering  

Liu, Z., Mo, X., Ma, F., Li, S., Wu, G., Tang, B., & Lin, L. (2021). Synthesis of carboxymethyl chitosan-strontium complex and its therapeutic effects on relieving osteoarthritis. Carbohydrate Polymers261, 117869. https://doi.org/10.1016/j.carbpol.2021.117869   

Zhao, Y., You, Z., Xing, D., Li, J. J., Zhang, Q., Huang, H., Li, Z., Jiang, S., Wu, Z., Zhang, Y., Li, W., Zhang, L., Du, Y., & Lin, J. (2021). Comparison of Chondrocytes in Knee Osteoarthritis and Regulation by Scaffold Pore Size and Stiffness. Tissue Engineering Part A27(3–4), 223–236. https://doi.org/10.1089/ten.tea.2020.0085 

Cancer and Tumors 

Bao, M., Chen, Y., Liu, J.-T., Bao, H., Wang, W.-B., Qi, Y.-X., & Lv, F. (2021). Extracellular matrix stiffness controls VEGF165 secretion and neuroblastoma angiogenesis via the YAP/RUNX2/SRSF1 axis. Angiogenesishttps://doi.org/10.1007/s10456-021-09804-7 

DMA (Dynamic Mechanical Analysis) 

Hui, E., Moretti, L., Barker, T. H., & Caliari, S. R. (2021). The combined influence of viscoelasticity and adhesive cues on fibroblast spreading and focal adhesion formation. BioRxiv, 2021.02.17.430924. https://doi.org/10.1101/2021.02.17.430924 

Tamayo-Elizalde, M., Chen, H., Malboubi, M., Ye, H., & Jerusalem, A. (2021). Action potential alterations induced by single F11 neuronal cell loading. Progress in Biophysics and Molecular Biology. https://doi.org/10.1016/j.pbiomolbio.2020.12.003 

ECM (Extra Cellular Matrix) 

Ruiz-Zapata, A. M., Heinz, A., Kerkhof, M. H., van de Westerlo-van Rijt, C., Schmelzer, C. E. H., Stoop, R., Kluivers, K. B., & Oosterwijk, E. (2020). Extracellular Matrix Stiffness and Composition Regulate the Myofibroblast Differentiation of Vaginal Fibroblasts. International Journal of Molecular Sciences21(13), 4762. https://doi.org/10.3390/ijms21134762 

Decellularized Scaffolds 

Basara, G., Ozcebe, S. G., Ellis, B. W., & Zorlutuna, P. (2021). Tunable Human Myocardium Derived Decellularized Extracellular Matrix for 3D Bioprinting and Cardiac Tissue Engineering. Gels, 7(2), 70. https://doi.org/10.3390/gels7020070 

Bahcecioglu, G., Yue, X., Howe, E., Guldner, I., Stack, M. S., Nakshatri, H., Zhang, S., & Zorlutuna, P. (2021). Aged Breast Extracellular Matrix Drives Mammary Epithelial Cells to an Invasive and Cancer-Like Phenotype. BioRxiv, 2020.09.30.320960. https://doi.org/10.1101/2020.09.30.320960 

Chen, S., Liu, A., Wu, C., Chen, Y., Liu, C., Zhang, Y., Wu, K., Wei, D., Sun, J., Zhou, L., & Fan, H. (2021). Static–Dynamic Profited Viscoelastic Hydrogels for Motor-Clutch-Regulated Neurogenesis. ACS Applied Materials & Interfaces13(21), 24463–24476. https://doi.org/10.1021/acsami.1c03821 

Monckton, C. P., Brougham-Cook, A., Kaylan, K. B., Underhill, G. H., & Khetani, S. R. (2021). Elucidating Extracellular Matrix and Stiffness Control of Primary Human Hepatocyte Phenotype via Cell Microarrays. Advanced Materials Interfaces8(22), 2101284. https://doi.org/10.1002/admi.202101284 

Decellularized Pancreas  

Decellularized Pericardium 

Fibrosis 

Lung 

Intestinal 

Tissue Engineering 

Fibers 

Miar, S., Ong, J. L., Bizios, R., & Guda, T. (2021). Electrically Stimulated Tunable Drug Delivery From Polypyrrole-Coated Polyvinylidene Fluoride. Frontiers in Chemistry9. https://doi.org/10.3389/fchem.2021.599631 

K. Nunes, J., Li, J., M. Griffiths, I., Rallabandi, B., Man, J., & A. Stone, H. (2021). Electrostatic wrapping of a microfiber around a curved particle. Soft Matter17(13), 3609–3618. https://doi.org/10.1039/D0SM01857K  

Guo, F., Wang, Y., Jiang, Y., Li, Z., Xu, Z., Zhao, X., Guo, T., Jiang, W., & Gao, C. (n.d.). Hydroplastic Micromolding of 2D Sheets. Advanced Materialsn/a(n/a), 2008116. https://doi.org/10.1002/adma.202008116 

Gels 

Duong, C. N., Brückner, R., Schmitt, M., Nottebaum, A. F., Braun, L. J., Meyer zu Brickwedde, M., Ipe, U., vom Bruch, H., Schöler, H. R., Trapani, G., Trappmann, B., Ebrahimkutty, M. P., Huveneers, S., de Rooij, J., Ishiyama, N., Ikura, M., & Vestweber, D. (2021). Force-induced changes of α-catenin conformation stabilize vascular junctions independently of vinculin. Journal of Cell Science134(24), jcs259012. https://doi.org/10.1242/jcs.259012 

Scaffolds 

Hou, M., Tian, B., Bai, B., Ci, Z., Liu, Y., Zhang, Y., Zhou, G., & Cao, Y. (2021). Dominant role of in situ native cartilage niche for determining the cartilage type regenerated by BMSCs. Bioactive Materialshttps://doi.org/10.1016/j.bioactmat.2021.11.007 

Castilho, M., Levato, R., Bernal, P. N., de Ruijter, M., Sheng, C. Y., van Duijn, J., Piluso, S., Ito, K., & Malda, J. (2021). Hydrogel-Based Bioinks for Cell Electrowriting of Well-Organized Living Structures with Micrometer-Scale Resolution. Biomacromolecules22(2), 855–866. https://doi.org/10.1021/acs.biomac.0c01577 

Bogunovic, N., Meekel, J. P., Majolée, J., Hekhuis, M., Pyszkowski, J., Jockenhövel, S., Kruse, M., Riesebos, E., Micha, D., Blankensteijn, J. D., Hordijk, P. L., Ghazanfari, S., & Yeung, K. K. (2021). Patient-Specific 3-Dimensional Model of Smooth Muscle Cell and Extracellular Matrix Dysfunction for the Study of Aortic Aneurysms. Journal of Endovascular Therapy, 15266028211009272. https://doi.org/10.1177/15266028211009272 

Camarero-Espinosa, S., & Moroni, L. (2021). Janus 3D printed dynamic scaffolds for nanovibration-driven bone regeneration. Nature Communications12(1), 1031. https://doi.org/10.1038/s41467-021-21325-x – published before on bioarXiv 

Zhang, Y., Yang, X., & Xiong, C. (2021). Mechanical characterization of soft silicone gels via spherical nanoindentation for applications in mechanobiology. Acta Mechanica Sinicahttps://doi.org/10.1007/s10409-021-01084-0  

Stricher, M., Sarde, C.-O., Guénin, E., Egles, C., & Delbecq, F. (2021). Cellulosic/Polyvinyl Alcohol Composite Hydrogel: Synthesis, Characterization and Applications in Tissue Engineering. Polymers13(20), 3598. https://doi.org/10.3390/polym13203598 

Bardakova, K. N., Faletrov, Y. V., Epifanov, E. O., Minaev, N. V., Kaplin, V. S., Piskun, Y. A., Koteneva, P. I., Shkumatov, V. M., Aksenova, N. A., Shpichka, A. I., Solovieva, A. B., Kostjuk, S. V., & Timashev, P. S. (2021). A Hydrophobic Derivative of Ciprofloxacin as a New Photoinitiator of Two-Photon Polymerization: Synthesis and Usage for the Formation of Biocompatible Polylactide-Based 3D Scaffolds. Polymers13(19), 3385. https://doi.org/10.3390/polym13193385 

Hydrogels 

Han, X., Tang, S., Wang, L., Xu, X., Yan, R., Yan, S., Guo, Z., Hu, K., Yu, T., Li, M., Li, Y., Zhang, F., & Gu, N. (2021). Multicellular Spheroids Formation on Hydrogel Enhances Osteogenic/Odontogenic Differentiation of Dental Pulp Stem Cells Under Magnetic Nanoparticles Induction. International Journal of Nanomedicine16, 5101–5115. https://doi.org/10.2147/IJN.S318991 

Chen, L., Wu, C., Wei, D., Chen, S., Xiao, Z., Zhu, H., Luo, H., Sun, J., & Fan, H. (2021). Biomimetic mineralized microenvironment stiffness regulated BMSCs osteogenic differentiation through cytoskeleton mediated mechanical signaling transduction. Materials Science and Engineering: C119, 111613. https://doi.org/10.1016/j.msec.2020.111613 

Song, J., Michas, C., Chen, C. S., White, A. E., & Grinstaff, M. W. (n.d.). Controlled Cell Alignment Using Two-Photon Direct Laser Writing-Patterned Hydrogels in 2D and 3D. Macromolecular Biosciencen/a(n/a), 2100051. https://doi.org/10.1002/mabi.202100051 

Islam, M. R., & Oyen, M. L. (2021). A poroelastic master curve for time-dependent and multiscale mechanics of hydrogels. Journal of Materials Research, 1–9. https://doi.org/10.1557/jmr.2020.309   

Nguyen, H. D., Sun, X., Yokota, H., & Lin, C.-C. (2021). Probing Osteocyte Functions in Gelatin Hydrogels with Tunable Viscoelasticity. Biomacromolecules.   https://doi.org/10.1021/acs.biomac.0c01476 

Song, T., Zhao, F., Wang, Y., Li, D., Lei, N., Li, X., Xiao, Y., & Zhang, X. (2021). Constructing a biomimetic nanocomposite with the in situ deposition of spherical hydroxyapatite nanoparticles to induce bone regeneration. Journal of Materials Chemistry B9(10), 2469–2482. https://doi.org/10.1039/D0TB02648D 

Zhang, M., Yan, S., Xu, X., Yu, T., Guo, Z., Ma, M., Zhang, Y., Gu, Z., Feng, Y., Du, C., Wan, M., Hu, K., Han, X., & Gu, N. (2021). Three-dimensional cell-culture platform based on hydrogel with tunable microenvironmental properties to improve insulin-secreting function of MIN6 cells. Biomaterials270, 120687. https://doi.org/10.1016/j.biomaterials.2021.120687  

Yang, Q., Jiang, N., Xu, H., Zhang, Y., Xiong, C., & Huang, J. (2021). Integration of electrotaxis and durotaxis in cancer cells: Subtle nonlinear responses to electromechanical coupling cues. Biosensors and Bioelectronics, 113289. https://doi.org/10.1016/j.bios.2021.113289 PAAm hydrogel  – gradients 

Bednarzig, V., Karakaya, E., Egana, A. L., Teßmar, J., Boccaccini, A. R., & Detsch, R. (2021). Advanced ADA-GEL bioink for bioprinted artificial cancer models. Bioprinting, e00145. https://doi.org/10.1016/j.bprint.2021.e00145 

Wang, C., Hao, H., Wang, J., Xue, Y., Huang, J., Ren, K., & Ji, J. (2021). High-throughput hyaluronic acid hydrogel arrays for cell selective adhesion screening. Journal of Materials Chemistry B9(19), 4024–4030. https://doi.org/10.1039/D1TB00429H 

Zhang, P., Xu, L., Gao, J., Xu, G., Song, Y., Li, G., Ren, J., Zhang, Y., Yang, C., Zhang, Y., Xie, R., Zhang, N., & Yang, H. (2021). 3D collagen matrices modulate the transcriptional trajectory of bone marrow hematopoietic progenitors into macrophage lineage commitment. Bioactive Materialshttps://doi.org/10.1016/j.bioactmat.2021.08.032 

Zhang, Q., Yang, T., Zhang, R., Liang, X., Wang, G., Tian, Y., Xie, L., & Tian, W. (2021). Platelet lysate functionalized gelatin methacrylate microspheres for improving angiogenesis in endodontic regeneration. Acta Biomaterialiahttps://doi.org/10.1016/j.actbio.2021.09.024 

Kumar, M., Toprakhisar, B., Van Haele, M., Antoranz, A., Boon, R., Chesnais, F., De Smedt, J., Tricot, T., Idoype, T. I., Canella, M., Tilliole, P., De Boeck, J., Bajaj, M., Ranga, A., Bosisio, F. M., Roskams, T., van Grunsven, L. A., & Verfaillie, C. M. (2021). A fully defined matrix to support a pluripotent stem cell derived multi-cell-liver steatohepatitis and fibrosis model. Biomaterials276, 121006. https://doi.org/10.1016/j.biomaterials.2021.121006 

Cells on Gels  

EzEldeen, M., Toprakhisar, B., Murgia, D., Smisdom, N., Deschaume, O., Bartic, C., Pereira, R. V. S., Opdenakker, G., Lambrichts, I., Bronckaers, A., Jacobs, R., Patterson, J., & Oosterwyck, H. V. (2021). Microstructural differences of fibrin and self-assembling peptide hydrogels in dental pulp stem cell behavior: The effect of chlorite-oxidized oxyamylose [Preprint]. In Review. https://doi.org/10.21203/rs.3.rs-109250/v1 

Ramadan, R., Neerven, S. van, Wouters, V., Garcia, T. M., Muncan, V., Franklin, O., Battle, M., Carlson, K., Leach, J., Sansom, O., Vermeulen, L., Medema, J., & Huels, D. (2021). The extracellular matrix controls stem cell specification and tissue morphology in the developing and adult gut. BioRxiv, 2021.04.14.439776. https://doi.org/10.1101/2021.04.14.439776 

Öztürk-Öncel, M. Ö., Heras-Bautista, C. O., Uzun, L., Hür, D., Hescheler, J., Pfannkuche, K., & Garipcan, B. (2021). Impact of Poly(dimethylsiloxane) Surface Modification with Conventional and Amino Acid-Conjugated Self-Assembled Monolayers on the Differentiation of Induced Pluripotent Stem Cells into Cardiomyocytes. ACS Biomaterials Science & Engineering7(4), 1539–1551. https://doi.org/10.1021/acsbiomaterials.0c01434 

Hydrogels with cells  

EzEldeen, M., Toprakhisar, B., Murgia, D., Smisdom, N., Deschaume, O., Bartic, C., Van Oosterwyck, H., Pereira, R. V. S., Opdenakker, G., Lambrichts, I., Bronckaers, A., Jacobs, R., & Patterson, J. (2021). Chlorite oxidized oxyamylose differentially influences the microstructure of fibrin and self assembling peptide hydrogels as well as dental pulp stem cell behavior. Scientific Reports11(1), 5687. https://doi.org/10.1038/s41598-021-84405-4 

Dobre, O., Oliva, M. A. G., Ciccone, G., Trujillo, S., Rodrigo‐Navarro, A., Venters, D. C., Llopis‐Hernandez, V., Vassalli, M., Gonzalez‐Garcia, C., Dalby, M. J., & Salmeron‐Sanchez, M. (n.d.). A Hydrogel Platform that Incorporates Laminin Isoforms for Efficient Presentation of Growth Factors – Neural Growth and Osteogenesis. Advanced Functional Materialsn/a(n/a), 2010225. https://doi.org/10.1002/adfm.202010225 – 

Distler, T., Lauria, I., Detsch, R., Sauter, C. M., Bendt, F., Kapr, J., Rütten, S., Boccaccini, A. R., & Fritsche, E. (2021). Neuronal Differentiation from Induced Pluripotent Stem Cell-Derived Neurospheres by the Application of Oxidized Alginate-Gelatin-Laminin Hydrogels. Biomedicines9(3), 261. https://doi.org/10.3390/biomedicines9030261 

Hydrogels (Cartilage and Cardiovascular) 

Chen, J., Yang, J., Wang, L., Zhang, X., Heng, B. C., Wang, D.-A., & Ge, Z. (2021). Modified hyaluronic acid hydrogels with chemical groups that facilitate adhesion to host tissues enhance cartilage regeneration. Bioactive Materials6(6), 1689 -1698. https://doi.org/10.1016/j.bioactmat.2020.11.020 

Liu, Y., Guo, R., Wu, T., Lyu, Y., Xiao, M., He, B., Fan, G., Yang, J., & Liu, W. (2021). One zwitterionic injectable hydrogel with ion conductivity enables efficient restoration of cardiac function after myocardial infarction. Chemical Engineering Journal418, 129352. https://doi.org/10.1016/j.cej.2021.129352 

Microspheres  

Shavkuta, B., Bardakova, K., Khristidis, Y., Minaev, N. V., Frolova, A., Kotova, S., Aksenova, N., Heydari, Z., Semenova, E., Khlebnikova, T., Golubeva, E. N., Kostjuk, S., Vosough, M., Timashev, P. S., & Shpichka, A. I. (2021). Approach to tune drug release in particles fabricated from methacrylate functionalized polylactides. Molecular Systems Design & Engineeringhttps://doi.org/10.1039/D0ME00157K 

Yang, T., Zhang, Q., Xie, L., Zhang, R., Qian, R., Tian, Y., Chen, G., & Tian, W. (2021). HDPSC-laden GelMA microspheres fabricated using electrostatic microdroplet method for endodontic regeneration. Materials Science and Engineering: C121, 111850. https://doi.org/10.1016/j.msec.2020.111850  

Ocular 

Lens 

Olyer and Tucker (2021). Surface softness comparison of select contact lenses by nanoindentation. Investigative Ophthalmology & Visual Science, 62, 662  

Cornea 

Shang, Y., Li, Y., Wang, Z., Sun, X., & Zhang, F. (2021). Risk Evaluation of Human Corneal Stromal Lenticules From SMILE for Reuse. Journal of Refractive Surgery37(1), 32–40. https://doi.org/10.3928/1081597X-20201030-03 – human corneal stromal lenticules 

Knight, O. J., Hubbard, D., Ziebarth, N., & Mei, H. (2021). Examining Cantilever Induced Epithelial Damage. Investigative Ophthalmology & Visual Science62(8), 789–789. Examining Cantilever Induced Epithelial Damage | IOVS | ARVO Journals 

Oocytes 

Kuske, M., Floehr, J., Yiallouros, I., Michna, T., Jahnen-Dechent, W., Tenzer, S., Stöcker, W., & Körschgen, H. (2021). Limited proteolysis by acrosin affects sperm-binding and mechanical resilience of the mouse zona pellucida. Molecular Human ReproductionOocyte gaab022https://doi.org/10.1093/molehr/gaab022  

Schmitz, C., Sadr, S. Z., Körschgen, H., Kuske, M., Schoen, J., Stöcker, W., Jahnen-Dechent, W., & Floehr, J. (2021). The E-Modulus of the Oocyte Is a Non-Destructive Measure of Zona Pellucida Hardening. Reproduction1(aop). https://doi.org/10.1530/REP-21-0122 – oocyte 

Other tissues 

Fang, S., McLean, J., Shi, L., Vink, J.-S. Y., Hendon, C. P., & Myers, K. M. (2021). Anisotropic Mechanical Properties of the Human Uterus Measured by Spherical Indentation. Annals of Biomedical Engineeringhttps://doi.org/10.1007/s10439-021-02769-0  

Lee, W., Ostadi Moghaddam, A., Shen, S., Phillips, H., McFarlin, B. L., Wagoner Johnson, A. J., & Toussaint, K. C. (2021). An optomechanogram for assessment of the structural and mechanical properties of tissues. Scientific Reports11(1), 324. https://doi.org/10.1038/s41598-020-79602-6 

Park, G. Y., Tarafder, S., Lewis, S., Park, S., Park, R., Siddiqui, Z., Kumar, V., & Lee, C. H. (2021). Oxo-M and 4-PPBP Delivery via Multi-Domain Peptide Hydrogel Toward Tendon Regeneration (p. 2021.08.25.457430). https://doi.org/10.1101/2021.08.25.457430 

Bozdag, G. O., Zamani-Dahaj, S. A., Kahn, P. C., Day, T. C., Tong, K., Balwani, A. H., Dyer, E. L., Yunker, P. J., & Ratcliff, W. C. (2021). De novo evolution of macroscopic multicellularity (p. 2021.08.03.454982). https://doi.org/10.1101/2021.08.03.454982 

Comparison of multiple types of tissues 

Levillain, A., Ahmed, S., Kaimaki, D.-M., Schuler, S., Barros, S., Labonte, D., Iatridis, J. C., & Nowlan, N. C. (2021). PRENATAL MUSCLE FORCES ARE NECESSARY FOR VERTEBRAL SEGMENTATION AND DISC STRUCTURE, BUT NOT FOR NOTOCHORD INVOLUTION IN MICE. European Cells & Materials41, 558–575. https://doi.org/10.22203/eCM.v041a36 

Plants 

Liu, H., Liu, S., Huang, G., & Xu, F. (2021). Effect of gene mutation of plants on their mechano-sensibility: The mutant of EXO70H4 influences the buckling of Arabidopsis trichomes. Analyst146(16), 5169–5176. https://doi.org/10.1039/D1AN00682G  

Polymers 

Sun, Y., Wang, X., Xiao, M., Lv, S., Cheng, M., & Shi, F. (2021). Elastic-Modulus-Dependent Macroscopic Supramolecular Assembly of Poly(dimethylsiloxane) for Understanding Fast Interfacial Adhesion. Langmuirhttps://doi.org/10.1021/acs.langmuir.1c00266  

Sheng, J.-Y., Mo, C., Li, G.-Y., Zhao, H.-C., Cao, Y., & Feng, X.-Q. (2021). AFM-based indentation method for measuring the relaxation property of living cells. Journal of Biomechanics, 110444. https://doi.org/10.1016/j.jbiomech.2021.110444 

Microneedles 

Liu, P., Du, H., Wu, Z., Wang, H., Tao, J., Zhang, L., & Zhu, J. (2021). Hydrophilic and anti-adhesive modification of porous polymer microneedles for rapid dermal interstitial fluid extraction. Journal of Materials Chemistry B9(27), 5476–5483. https://doi.org/10.1039/D1TB00873K 

PDMS 

Xue, Y., Wang, J., Ren, K., & Ji, J. (2020). Deep Mining of Subtle Differences in Cell Morphology via Deep Learning. Advanced Theory and Simulations, 2000172. https://doi.org/10.1002/adts.202000172   

Single Cells 

Connolly, S., McGourty, K., & Newport, D. (2021). The influence of cell elastic modulus on inertial positions in Poiseuille microflows. Biophysical Journalhttps://doi.org/10.1016/j.bpj.2021.01.026 

Emig, R., Knodt, W., Krussig, M. J., Zgierski-Johnston, C. M., Gorka, O., Groß, O., Kohl, P., Ravens, U., & Peyronnet, R. (2021). Piezo1 Channels Contribute to the Regulation of Human Atrial Fibroblast Mechanical Properties and Matrix Stiffness Sensing. Cells10(3), 663. https://doi.org/10.3390/cells10030663  

Liu, X., Xia, X., Wang, X., Zhou, J., Sung, L. A., Long, J., Geng, X., Zeng, Z., & Yao, W. (2021). Tropomodulin1 Expression Increases Upon Maturation in Dendritic Cells and Promotes Their Maturation and Immune Functions. Frontiers in Immunology0https://doi.org/10.3389/fimmu.2020.587441 

Stem Cells 

Hodgkinson, T., Tsimbouri, P. M., Llopis-Hernandez, V., Campsie, P., Scurr, D., Childs, P. G., Phillips, D., Donnelly, S., Wells, J. A., O’Brien, F. J., Salmeron-Sanchez, M., Burgess, K., Alexander, M., Vassalli, M., Oreffo, R. O. C., Reid, S., France, D. J., & Dalby, M. J. (2021). The use of nanovibration to discover specific and potent bioactive metabolites that stimulate osteogenic differentiation in mesenchymal stem cells. Science Advances, 7(9), eabb7921. https://doi.org/10.1126/sciadv.abb7921 

Sit, B., Feng, Z., Xanthis, I., Marhuenda, E., Zingaro, S., Shanahan, C., Jones, G. E., Yu, C., & Iskratsch, T. (2021). Matrix stiffness and blood pressure together regulate vascular smooth muscle cell phenotype switching and cofilin dependent podosome formation. BioRxiv, 2020.12.27.424498. https://doi.org/10.1101/2020.12.27.424498 

Maurer, M., Perati, S., Johnson, L., Gacita, A. M., Lai, S., Wallrath, L. L., Benjamin, I. J., McNally, E. M., Kirby, T. J., & Lammerding, J. (2021). Impaired lamin localization to the nuclear envelope is responsible for nuclear damage in LMNA mutant iPSC-derived cardiomyocytes (p. 2021.10.30.466591). https://doi.org/10.1101/2021.10.30.466591 

Other 

Nyga, A., Muñoz, J., Dercksen, S., Fornabaio, G., Uroz, M., Trepat, X., Baum, B., Matthews, H., & Conte, V. (2021). Oncogenic RAS instructs morphological transformation of human epithelia via differential tissue mechanics. BioRxiv, 2021.01.19.427283. https://doi.org/10.1101/2021.01.19.427283 

Spheroids & Organoids 

Organoids 

Ryu, H., Park, Y., Luan, H., Dalgin, G., Jeffris, K., Yoon, H.-J., Chung, T. S., Kim, J. U., Kwak, S. S., Lee, G., Jeong, H., Kim, J., Bai, W., Kim, J., Jung, Y. H., Tryba, A. K., Song, J. W., Huang, Y., Philipson, L. H., … Rogers, J. A. (n.d.). Transparent, Compliant 3D Mesostructures for Precise Evaluation of Mechanical Characteristics of Organoids. Advanced Materialsn/a(n/a), 2100026.  https://doi.org/10.1002/adma.202100026 

Spheroids 

Feijão, T., Neves, M. I., Sousa, A., Torres, A. L., Bidarra, S. J., Orge, I. D., Carvalho, D. T. O., & Barrias, C. C. (2021). Engineering injectable vascularized tissues from the bottom-up: Dynamics of in-gel extra-spheroid dermal tissue assembly. Biomaterials279, 121222. https://doi.org/10.1016/j.biomaterials.2021.121222 

Bioprinting -(3D) 

Kreller, T., Distler, T., Heid, S., Gerth, S., Detsch, R., & Boccaccini, A. R. (2021). Physico-chemical Modification of Gelatine for the Improvement of 3D Printability of Oxidized Alginate-gelatine Hydrogels Towards Cartilage Tissue Engineering. Materials & Design, 109877. https://doi.org/10.1016/j.matdes.2021.109877  

Cao, Y., Cheng, P., Sang, S., Xiang, C., An, Y., Wei, X., Yan, Y., & Li, P. (2021). 3D printed PCL/GelMA biphasic scaffold boosts cartilage regeneration using co-culture of mesenchymal stem cells and chondrocytes: In vivo study. Materials & Design210, 110065. https://doi.org/10.1016/j.matdes.2021.110065 

Gibney, R., Patterson, J., & Ferraris, E. (2021). High-Resolution Bioprinting of Recombinant Human Collagen Type III. Polymers13(17), 2973. https://doi.org/10.3390/polym13172973 

Neufurth, M., Wang, S., Schröder, H. C., Al-Nawas, B., Wang, X., & Müller, W. E. (2021). 3D bioprinting of tissue units with mesenchymal stem cells, retaining their proliferative and differentiating potential, in polyphosphate-containing bio-ink. Biofabricationhttps://doi.org/10.1088/1758-5090/ac3f29 

Curious to know more or want to test your samples? Contact us. 

Interested in mechanobiology?

Discover latest

We’re excited to announce that Optics11 Life will be attending the Biomedical Engineering Society (BMES)…

September 05 – 06, 2024 Queen Mary University, London Visit Optics11 Life at BaCell 3D…

Imagine a world where we can unite physics with biology and understand how cells and…

June 30 – July 3, 2024 Edinburgh International Conference Center, Scotland – Booth 12 Visit…

PLATFORMS THAT ACCELERATE TRANSLATIONAL RESEARCH

Whether your focus lies on mechanical measurements and characterization at the cell scale, or you work with muscle tissues, our platforms offer you precise, fast, and accurate outcomes. Discover more about how our products can help you accelerate and achieve your research goals. 

WHO WE ARE

We are a growing team of 60+ passionate people, headquartered in Amsterdam, the Netherlands. Learn more about our journey so far, meet our team of professionals, and our career opportunities. 

SERVICE & SUPPORT

From initial interest to full-scale implementation, and throughout the entire lifecycle of our instruments, we offer our customers a dedicated and customized experience. We focus on optimizing the functionality and operation of our instruments, to ensure peak efficiency, enhancing their research productivity.

Resources

Contact

Quote Form

Get THE latest insights

Product Inquiry