Hydrogels, Biofilms, Spheroids and many more applications were measured with our Piuma and Chiaro nanoindenters. This year alone, we were featured in 86 new publications in various scientific journals. The number of papers are projected to grow significantly each year.
The Impact Factor (IF) are based on the 5 journals that have the highest ranking within this list.
- Nature – Nature Journal IF (49.9); Nature Chemical Biology IF (15.04); Nature Communications (14.9)
- Bioactive Materials (14.12)
- Chemical Engineerning Journal (13.07)
- Biomaterials – IF (12.4)
- Acta Biomaterialia – IF (8.9)
Find the list of 2021 publications (Q1 Q4) to see how Piuma and Chiaro Nanoindenters were used for the categorized applications.
Biofilms
Films
Pereira, D. de M., Schumacher, M., & Habibović, P. (2021). Cobalt-containing Calcium Phosphate Induces Resorption of Biomineralized Collagen by Human Osteoclasts [Preprint]. In Review. https://doi.org/10.21203/rs.3.rs-136339/v1
Wang, Y., An, B., Xue, B., Pu, J., Zhang, X., Huang, Y., Yu, Y., Cao, Y., & Zhong, C. (2021). Living materials fabricated via gradient mineralization of light-inducible biofilms. Nature Chemical Biology, 1–9. https://doi.org/10.1038/s41589-020-00697-z –
Shin, S., Li, M., Wu, X., Saha, A., & Bae, J. (2021). Role of soft-gel substrates on bouncing–merging transition in drop impact on a liquid film. Soft Matter, 17(3), 571–579. https://doi.org/10.1039/D0SM01675F
1) Hu, M., Jia, F., Huang, W.-P., Li, X., Hu, D.-F., Wang, J., Ren, K.-F., Fu, G.-S., Wang, Y.-B., & Ji, J. (2021). Substrate stiffness differentially impacts autophagy of endothelial cells and smooth muscle cells. Bioactive Materials, 6(5), 1413–1422. https://doi.org/10.1016/j.bioactmat.2020.10.013 –
Li, T., Xie, R., Chen, W., Schofield, A. B., & Clegg, P. S. (2021). Complex High-Internal Phase Emulsions that can Form Interfacial Films with Tunable Morphologies. Langmuir, 37(32), 9802–9808. https://doi.org/0.1021/acs.langmuir.1c01355
Coatings
Albers, P. T. M., Laven, J., van der Ven, L. G. J., van Benthem, R. A. T. M., de With, G., & Esteves, A. C. C. (2021). Aqueous friction behavior of swollen hydrophilic poly(ethylene glycol)-based polyurethane coatings. Journal of Materials Science.
Chan, D., Chien, J.-C., Axpe, E., Blankemeier, L., Baker, S. W., Swaminathan, S., Piunova, V. A., Zubarev, D. Y., Maikawa, C. L., Grosskopf, A. K., Mann, J. L., Soh, H. T., & Appel, E. A. (2021). Combinatorial Polyacrylamide Hydrogels for Preventing Biofouling on Implantable Biosensors (p. 2020.05.25.115675). https://doi.org/10.1101/2020.05.25.115675
Cardiovascular
Bao, H., Li, Z.-T., Xu, L.-H., Su, T.-Y., Han, Y., Bao, M., Liu, Z., Fan, Y.-J., Lou, Y., Chen, Y., Jiang, Z.-L., Gong, X.-B., & Qi, Y.-X. (2021). Platelet-Derived Extracellular Vesicles Increase Col8a1 Secretion and Vascular Stiffness in Intimal Injury. Frontiers in Cell and Developmental Biology, 9. https://doi.org/10.3389/fcell.2021.641763\
Contractile force measurements
Cardiac Cells
Shah, P. P., Lv, W., Rhoades, J. H., Poleshko, A., Abbey, D., Caporizzo, M. A., Linares-Saldana, R., Heffler, J. G., Sayed, N., Thomas, D., Wang, Q., Stanton, L. J., Bedi, K., Morley, M. P., Cappola, T. P., Owens, A. T., Margulies, K. B., Frank, D. B., Wu, J. C., … Jain, R. (2021). Pathogenic LMNA variants disrupt cardiac lamina-chromatin interactions and de-repress alternative fate genes. Cell Stem Cell. https://doi.org/10.1016/j.stem.2020.12.016
Cartilage
Native Tissues
Lawrence, E. A., Aggleton, J., van Loon, J., Godivier, J., Harniman, R., Pei, J., Nowlan, N., & Hammond, C. (2021). Exposure to hypergravity during zebrafish development alters cartilage material properties and strain distribution. Bone & Joint Research, 10(2), 137–148. https://doi.org/10.1302/2046-3758.102.BJR-2020-0239.R1
Patel, J. M., Loebel, C., Saleh, K. S., Wise, B. C., Bonnevie, E. D., Miller, L. M., Carey, J. L., Burdick, J. A., & Mauck, R. L. (n.d.). Stabilization of Damaged Articular Cartilage with Hydrogel-Mediated Reinforcement and Sealing. Advanced Healthcare Materials, n/a(n/a), 2100315. https://doi.org/10.1002/adhm.202100315
Tissue Engineering
Liu, Z., Mo, X., Ma, F., Li, S., Wu, G., Tang, B., & Lin, L. (2021). Synthesis of carboxymethyl chitosan-strontium complex and its therapeutic effects on relieving osteoarthritis. Carbohydrate Polymers, 261, 117869. https://doi.org/10.1016/j.carbpol.2021.117869
Zhao, Y., You, Z., Xing, D., Li, J. J., Zhang, Q., Huang, H., Li, Z., Jiang, S., Wu, Z., Zhang, Y., Li, W., Zhang, L., Du, Y., & Lin, J. (2021). Comparison of Chondrocytes in Knee Osteoarthritis and Regulation by Scaffold Pore Size and Stiffness. Tissue Engineering Part A, 27(3–4), 223–236. https://doi.org/10.1089/ten.tea.2020.0085
Cancer and Tumors
Bao, M., Chen, Y., Liu, J.-T., Bao, H., Wang, W.-B., Qi, Y.-X., & Lv, F. (2021). Extracellular matrix stiffness controls VEGF165 secretion and neuroblastoma angiogenesis via the YAP/RUNX2/SRSF1 axis. Angiogenesis. https://doi.org/10.1007/s10456-021-09804-7
DMA (Dynamic Mechanical Analysis)
Hui, E., Moretti, L., Barker, T. H., & Caliari, S. R. (2021). The combined influence of viscoelasticity and adhesive cues on fibroblast spreading and focal adhesion formation. BioRxiv, 2021.02.17.430924. https://doi.org/10.1101/2021.02.17.430924
Tamayo-Elizalde, M., Chen, H., Malboubi, M., Ye, H., & Jerusalem, A. (2021). Action potential alterations induced by single F11 neuronal cell loading. Progress in Biophysics and Molecular Biology. https://doi.org/10.1016/j.pbiomolbio.2020.12.003
ECM (Extra Cellular Matrix)
Ruiz-Zapata, A. M., Heinz, A., Kerkhof, M. H., van de Westerlo-van Rijt, C., Schmelzer, C. E. H., Stoop, R., Kluivers, K. B., & Oosterwijk, E. (2020). Extracellular Matrix Stiffness and Composition Regulate the Myofibroblast Differentiation of Vaginal Fibroblasts. International Journal of Molecular Sciences, 21(13), 4762. https://doi.org/10.3390/ijms21134762
Decellularized Scaffolds
Basara, G., Ozcebe, S. G., Ellis, B. W., & Zorlutuna, P. (2021). Tunable Human Myocardium Derived Decellularized Extracellular Matrix for 3D Bioprinting and Cardiac Tissue Engineering. Gels, 7(2), 70. https://doi.org/10.3390/gels7020070
Bahcecioglu, G., Yue, X., Howe, E., Guldner, I., Stack, M. S., Nakshatri, H., Zhang, S., & Zorlutuna, P. (2021). Aged Breast Extracellular Matrix Drives Mammary Epithelial Cells to an Invasive and Cancer-Like Phenotype. BioRxiv, 2020.09.30.320960. https://doi.org/10.1101/2020.09.30.320960
Chen, S., Liu, A., Wu, C., Chen, Y., Liu, C., Zhang, Y., Wu, K., Wei, D., Sun, J., Zhou, L., & Fan, H. (2021). Static–Dynamic Profited Viscoelastic Hydrogels for Motor-Clutch-Regulated Neurogenesis. ACS Applied Materials & Interfaces, 13(21), 24463–24476. https://doi.org/10.1021/acsami.1c03821
Monckton, C. P., Brougham-Cook, A., Kaylan, K. B., Underhill, G. H., & Khetani, S. R. (2021). Elucidating Extracellular Matrix and Stiffness Control of Primary Human Hepatocyte Phenotype via Cell Microarrays. Advanced Materials Interfaces, 8(22), 2101284. https://doi.org/10.1002/admi.202101284
Decellularized Pancreas
Decellularized Pericardium
Fibrosis
Lung
Intestinal
Tissue Engineering
Fibers
Miar, S., Ong, J. L., Bizios, R., & Guda, T. (2021). Electrically Stimulated Tunable Drug Delivery From Polypyrrole-Coated Polyvinylidene Fluoride. Frontiers in Chemistry, 9. https://doi.org/10.3389/fchem.2021.599631
K. Nunes, J., Li, J., M. Griffiths, I., Rallabandi, B., Man, J., & A. Stone, H. (2021). Electrostatic wrapping of a microfiber around a curved particle. Soft Matter, 17(13), 3609–3618. https://doi.org/10.1039/D0SM01857K
Guo, F., Wang, Y., Jiang, Y., Li, Z., Xu, Z., Zhao, X., Guo, T., Jiang, W., & Gao, C. (n.d.). Hydroplastic Micromolding of 2D Sheets. Advanced Materials, n/a(n/a), 2008116. https://doi.org/10.1002/adma.202008116
Gels
Duong, C. N., Brückner, R., Schmitt, M., Nottebaum, A. F., Braun, L. J., Meyer zu Brickwedde, M., Ipe, U., vom Bruch, H., Schöler, H. R., Trapani, G., Trappmann, B., Ebrahimkutty, M. P., Huveneers, S., de Rooij, J., Ishiyama, N., Ikura, M., & Vestweber, D. (2021). Force-induced changes of α-catenin conformation stabilize vascular junctions independently of vinculin. Journal of Cell Science, 134(24), jcs259012. https://doi.org/10.1242/jcs.259012
Scaffolds
Hou, M., Tian, B., Bai, B., Ci, Z., Liu, Y., Zhang, Y., Zhou, G., & Cao, Y. (2021). Dominant role of in situ native cartilage niche for determining the cartilage type regenerated by BMSCs. Bioactive Materials. https://doi.org/10.1016/j.bioactmat.2021.11.007
Castilho, M., Levato, R., Bernal, P. N., de Ruijter, M., Sheng, C. Y., van Duijn, J., Piluso, S., Ito, K., & Malda, J. (2021). Hydrogel-Based Bioinks for Cell Electrowriting of Well-Organized Living Structures with Micrometer-Scale Resolution. Biomacromolecules, 22(2), 855–866. https://doi.org/10.1021/acs.biomac.0c01577
Bogunovic, N., Meekel, J. P., Majolée, J., Hekhuis, M., Pyszkowski, J., Jockenhövel, S., Kruse, M., Riesebos, E., Micha, D., Blankensteijn, J. D., Hordijk, P. L., Ghazanfari, S., & Yeung, K. K. (2021). Patient-Specific 3-Dimensional Model of Smooth Muscle Cell and Extracellular Matrix Dysfunction for the Study of Aortic Aneurysms. Journal of Endovascular Therapy, 15266028211009272. https://doi.org/10.1177/15266028211009272
Camarero-Espinosa, S., & Moroni, L. (2021). Janus 3D printed dynamic scaffolds for nanovibration-driven bone regeneration. Nature Communications, 12(1), 1031. https://doi.org/10.1038/s41467-021-21325-x – published before on bioarXiv
Zhang, Y., Yang, X., & Xiong, C. (2021). Mechanical characterization of soft silicone gels via spherical nanoindentation for applications in mechanobiology. Acta Mechanica Sinica. https://doi.org/10.1007/s10409-021-01084-0
Stricher, M., Sarde, C.-O., Guénin, E., Egles, C., & Delbecq, F. (2021). Cellulosic/Polyvinyl Alcohol Composite Hydrogel: Synthesis, Characterization and Applications in Tissue Engineering. Polymers, 13(20), 3598. https://doi.org/10.3390/polym13203598
Bardakova, K. N., Faletrov, Y. V., Epifanov, E. O., Minaev, N. V., Kaplin, V. S., Piskun, Y. A., Koteneva, P. I., Shkumatov, V. M., Aksenova, N. A., Shpichka, A. I., Solovieva, A. B., Kostjuk, S. V., & Timashev, P. S. (2021). A Hydrophobic Derivative of Ciprofloxacin as a New Photoinitiator of Two-Photon Polymerization: Synthesis and Usage for the Formation of Biocompatible Polylactide-Based 3D Scaffolds. Polymers, 13(19), 3385. https://doi.org/10.3390/polym13193385
Hydrogels
Han, X., Tang, S., Wang, L., Xu, X., Yan, R., Yan, S., Guo, Z., Hu, K., Yu, T., Li, M., Li, Y., Zhang, F., & Gu, N. (2021). Multicellular Spheroids Formation on Hydrogel Enhances Osteogenic/Odontogenic Differentiation of Dental Pulp Stem Cells Under Magnetic Nanoparticles Induction. International Journal of Nanomedicine, 16, 5101–5115. https://doi.org/10.2147/IJN.S318991
Chen, L., Wu, C., Wei, D., Chen, S., Xiao, Z., Zhu, H., Luo, H., Sun, J., & Fan, H. (2021). Biomimetic mineralized microenvironment stiffness regulated BMSCs osteogenic differentiation through cytoskeleton mediated mechanical signaling transduction. Materials Science and Engineering: C, 119, 111613. https://doi.org/10.1016/j.msec.2020.111613
Song, J., Michas, C., Chen, C. S., White, A. E., & Grinstaff, M. W. (n.d.). Controlled Cell Alignment Using Two-Photon Direct Laser Writing-Patterned Hydrogels in 2D and 3D. Macromolecular Bioscience, n/a(n/a), 2100051. https://doi.org/10.1002/mabi.202100051
Islam, M. R., & Oyen, M. L. (2021). A poroelastic master curve for time-dependent and multiscale mechanics of hydrogels. Journal of Materials Research, 1–9. https://doi.org/10.1557/jmr.2020.309
Nguyen, H. D., Sun, X., Yokota, H., & Lin, C.-C. (2021). Probing Osteocyte Functions in Gelatin Hydrogels with Tunable Viscoelasticity. Biomacromolecules. https://doi.org/10.1021/acs.biomac.0c01476
Song, T., Zhao, F., Wang, Y., Li, D., Lei, N., Li, X., Xiao, Y., & Zhang, X. (2021). Constructing a biomimetic nanocomposite with the in situ deposition of spherical hydroxyapatite nanoparticles to induce bone regeneration. Journal of Materials Chemistry B, 9(10), 2469–2482. https://doi.org/10.1039/D0TB02648D
Zhang, M., Yan, S., Xu, X., Yu, T., Guo, Z., Ma, M., Zhang, Y., Gu, Z., Feng, Y., Du, C., Wan, M., Hu, K., Han, X., & Gu, N. (2021). Three-dimensional cell-culture platform based on hydrogel with tunable microenvironmental properties to improve insulin-secreting function of MIN6 cells. Biomaterials, 270, 120687. https://doi.org/10.1016/j.biomaterials.2021.120687
Yang, Q., Jiang, N., Xu, H., Zhang, Y., Xiong, C., & Huang, J. (2021). Integration of electrotaxis and durotaxis in cancer cells: Subtle nonlinear responses to electromechanical coupling cues. Biosensors and Bioelectronics, 113289. https://doi.org/10.1016/j.bios.2021.113289 PAAm hydrogel – gradients
Bednarzig, V., Karakaya, E., Egana, A. L., Teßmar, J., Boccaccini, A. R., & Detsch, R. (2021). Advanced ADA-GEL bioink for bioprinted artificial cancer models. Bioprinting, e00145. https://doi.org/10.1016/j.bprint.2021.e00145
Wang, C., Hao, H., Wang, J., Xue, Y., Huang, J., Ren, K., & Ji, J. (2021). High-throughput hyaluronic acid hydrogel arrays for cell selective adhesion screening. Journal of Materials Chemistry B, 9(19), 4024–4030. https://doi.org/10.1039/D1TB00429H
Zhang, P., Xu, L., Gao, J., Xu, G., Song, Y., Li, G., Ren, J., Zhang, Y., Yang, C., Zhang, Y., Xie, R., Zhang, N., & Yang, H. (2021). 3D collagen matrices modulate the transcriptional trajectory of bone marrow hematopoietic progenitors into macrophage lineage commitment. Bioactive Materials. https://doi.org/10.1016/j.bioactmat.2021.08.032
Zhang, Q., Yang, T., Zhang, R., Liang, X., Wang, G., Tian, Y., Xie, L., & Tian, W. (2021). Platelet lysate functionalized gelatin methacrylate microspheres for improving angiogenesis in endodontic regeneration. Acta Biomaterialia. https://doi.org/10.1016/j.actbio.2021.09.024
Kumar, M., Toprakhisar, B., Van Haele, M., Antoranz, A., Boon, R., Chesnais, F., De Smedt, J., Tricot, T., Idoype, T. I., Canella, M., Tilliole, P., De Boeck, J., Bajaj, M., Ranga, A., Bosisio, F. M., Roskams, T., van Grunsven, L. A., & Verfaillie, C. M. (2021). A fully defined matrix to support a pluripotent stem cell derived multi-cell-liver steatohepatitis and fibrosis model. Biomaterials, 276, 121006. https://doi.org/10.1016/j.biomaterials.2021.121006
Cells on Gels
EzEldeen, M., Toprakhisar, B., Murgia, D., Smisdom, N., Deschaume, O., Bartic, C., Pereira, R. V. S., Opdenakker, G., Lambrichts, I., Bronckaers, A., Jacobs, R., Patterson, J., & Oosterwyck, H. V. (2021). Microstructural differences of fibrin and self-assembling peptide hydrogels in dental pulp stem cell behavior: The effect of chlorite-oxidized oxyamylose [Preprint]. In Review. https://doi.org/10.21203/rs.3.rs-109250/v1
Ramadan, R., Neerven, S. van, Wouters, V., Garcia, T. M., Muncan, V., Franklin, O., Battle, M., Carlson, K., Leach, J., Sansom, O., Vermeulen, L., Medema, J., & Huels, D. (2021). The extracellular matrix controls stem cell specification and tissue morphology in the developing and adult gut. BioRxiv, 2021.04.14.439776. https://doi.org/10.1101/2021.04.14.439776
Öztürk-Öncel, M. Ö., Heras-Bautista, C. O., Uzun, L., Hür, D., Hescheler, J., Pfannkuche, K., & Garipcan, B. (2021). Impact of Poly(dimethylsiloxane) Surface Modification with Conventional and Amino Acid-Conjugated Self-Assembled Monolayers on the Differentiation of Induced Pluripotent Stem Cells into Cardiomyocytes. ACS Biomaterials Science & Engineering, 7(4), 1539–1551. https://doi.org/10.1021/acsbiomaterials.0c01434
Hydrogels with cells
EzEldeen, M., Toprakhisar, B., Murgia, D., Smisdom, N., Deschaume, O., Bartic, C., Van Oosterwyck, H., Pereira, R. V. S., Opdenakker, G., Lambrichts, I., Bronckaers, A., Jacobs, R., & Patterson, J. (2021). Chlorite oxidized oxyamylose differentially influences the microstructure of fibrin and self assembling peptide hydrogels as well as dental pulp stem cell behavior. Scientific Reports, 11(1), 5687. https://doi.org/10.1038/s41598-021-84405-4
Dobre, O., Oliva, M. A. G., Ciccone, G., Trujillo, S., Rodrigo‐Navarro, A., Venters, D. C., Llopis‐Hernandez, V., Vassalli, M., Gonzalez‐Garcia, C., Dalby, M. J., & Salmeron‐Sanchez, M. (n.d.). A Hydrogel Platform that Incorporates Laminin Isoforms for Efficient Presentation of Growth Factors – Neural Growth and Osteogenesis. Advanced Functional Materials, n/a(n/a), 2010225. https://doi.org/10.1002/adfm.202010225 –
Distler, T., Lauria, I., Detsch, R., Sauter, C. M., Bendt, F., Kapr, J., Rütten, S., Boccaccini, A. R., & Fritsche, E. (2021). Neuronal Differentiation from Induced Pluripotent Stem Cell-Derived Neurospheres by the Application of Oxidized Alginate-Gelatin-Laminin Hydrogels. Biomedicines, 9(3), 261. https://doi.org/10.3390/biomedicines9030261
Hydrogels (Cartilage and Cardiovascular)
Chen, J., Yang, J., Wang, L., Zhang, X., Heng, B. C., Wang, D.-A., & Ge, Z. (2021). Modified hyaluronic acid hydrogels with chemical groups that facilitate adhesion to host tissues enhance cartilage regeneration. Bioactive Materials, 6(6), 1689 -1698. https://doi.org/10.1016/j.bioactmat.2020.11.020
Liu, Y., Guo, R., Wu, T., Lyu, Y., Xiao, M., He, B., Fan, G., Yang, J., & Liu, W. (2021). One zwitterionic injectable hydrogel with ion conductivity enables efficient restoration of cardiac function after myocardial infarction. Chemical Engineering Journal, 418, 129352. https://doi.org/10.1016/j.cej.2021.129352
Microspheres
Shavkuta, B., Bardakova, K., Khristidis, Y., Minaev, N. V., Frolova, A., Kotova, S., Aksenova, N., Heydari, Z., Semenova, E., Khlebnikova, T., Golubeva, E. N., Kostjuk, S., Vosough, M., Timashev, P. S., & Shpichka, A. I. (2021). Approach to tune drug release in particles fabricated from methacrylate functionalized polylactides. Molecular Systems Design & Engineering. https://doi.org/10.1039/D0ME00157K
Yang, T., Zhang, Q., Xie, L., Zhang, R., Qian, R., Tian, Y., Chen, G., & Tian, W. (2021). HDPSC-laden GelMA microspheres fabricated using electrostatic microdroplet method for endodontic regeneration. Materials Science and Engineering: C, 121, 111850. https://doi.org/10.1016/j.msec.2020.111850
Ocular
Lens
Olyer and Tucker (2021). Surface softness comparison of select contact lenses by nanoindentation. Investigative Ophthalmology & Visual Science, 62, 662
Cornea
Shang, Y., Li, Y., Wang, Z., Sun, X., & Zhang, F. (2021). Risk Evaluation of Human Corneal Stromal Lenticules From SMILE for Reuse. Journal of Refractive Surgery, 37(1), 32–40. https://doi.org/10.3928/1081597X-20201030-03 – human corneal stromal lenticules
Knight, O. J., Hubbard, D., Ziebarth, N., & Mei, H. (2021). Examining Cantilever Induced Epithelial Damage. Investigative Ophthalmology & Visual Science, 62(8), 789–789. Examining Cantilever Induced Epithelial Damage | IOVS | ARVO Journals
Oocytes
Kuske, M., Floehr, J., Yiallouros, I., Michna, T., Jahnen-Dechent, W., Tenzer, S., Stöcker, W., & Körschgen, H. (2021). Limited proteolysis by acrosin affects sperm-binding and mechanical resilience of the mouse zona pellucida. Molecular Human Reproduction, Oocyte gaab022. https://doi.org/10.1093/molehr/gaab022
Schmitz, C., Sadr, S. Z., Körschgen, H., Kuske, M., Schoen, J., Stöcker, W., Jahnen-Dechent, W., & Floehr, J. (2021). The E-Modulus of the Oocyte Is a Non-Destructive Measure of Zona Pellucida Hardening. Reproduction, 1(aop). https://doi.org/10.1530/REP-21-0122 – oocyte
Other tissues
Fang, S., McLean, J., Shi, L., Vink, J.-S. Y., Hendon, C. P., & Myers, K. M. (2021). Anisotropic Mechanical Properties of the Human Uterus Measured by Spherical Indentation. Annals of Biomedical Engineering. https://doi.org/10.1007/s10439-021-02769-0
Lee, W., Ostadi Moghaddam, A., Shen, S., Phillips, H., McFarlin, B. L., Wagoner Johnson, A. J., & Toussaint, K. C. (2021). An optomechanogram for assessment of the structural and mechanical properties of tissues. Scientific Reports, 11(1), 324. https://doi.org/10.1038/s41598-020-79602-6
Park, G. Y., Tarafder, S., Lewis, S., Park, S., Park, R., Siddiqui, Z., Kumar, V., & Lee, C. H. (2021). Oxo-M and 4-PPBP Delivery via Multi-Domain Peptide Hydrogel Toward Tendon Regeneration (p. 2021.08.25.457430). https://doi.org/10.1101/2021.08.25.457430
Bozdag, G. O., Zamani-Dahaj, S. A., Kahn, P. C., Day, T. C., Tong, K., Balwani, A. H., Dyer, E. L., Yunker, P. J., & Ratcliff, W. C. (2021). De novo evolution of macroscopic multicellularity (p. 2021.08.03.454982). https://doi.org/10.1101/2021.08.03.454982
Comparison of multiple types of tissues
Levillain, A., Ahmed, S., Kaimaki, D.-M., Schuler, S., Barros, S., Labonte, D., Iatridis, J. C., & Nowlan, N. C. (2021). PRENATAL MUSCLE FORCES ARE NECESSARY FOR VERTEBRAL SEGMENTATION AND DISC STRUCTURE, BUT NOT FOR NOTOCHORD INVOLUTION IN MICE. European Cells & Materials, 41, 558–575. https://doi.org/10.22203/eCM.v041a36
Plants
Liu, H., Liu, S., Huang, G., & Xu, F. (2021). Effect of gene mutation of plants on their mechano-sensibility: The mutant of EXO70H4 influences the buckling of Arabidopsis trichomes. Analyst, 146(16), 5169–5176. https://doi.org/10.1039/D1AN00682G
Polymers
Sun, Y., Wang, X., Xiao, M., Lv, S., Cheng, M., & Shi, F. (2021). Elastic-Modulus-Dependent Macroscopic Supramolecular Assembly of Poly(dimethylsiloxane) for Understanding Fast Interfacial Adhesion. Langmuir. https://doi.org/10.1021/acs.langmuir.1c00266
Sheng, J.-Y., Mo, C., Li, G.-Y., Zhao, H.-C., Cao, Y., & Feng, X.-Q. (2021). AFM-based indentation method for measuring the relaxation property of living cells. Journal of Biomechanics, 110444. https://doi.org/10.1016/j.jbiomech.2021.110444
Microneedles
Liu, P., Du, H., Wu, Z., Wang, H., Tao, J., Zhang, L., & Zhu, J. (2021). Hydrophilic and anti-adhesive modification of porous polymer microneedles for rapid dermal interstitial fluid extraction. Journal of Materials Chemistry B, 9(27), 5476–5483. https://doi.org/10.1039/D1TB00873K
PDMS
Xue, Y., Wang, J., Ren, K., & Ji, J. (2020). Deep Mining of Subtle Differences in Cell Morphology via Deep Learning. Advanced Theory and Simulations, 2000172. https://doi.org/10.1002/adts.202000172
Single Cells
Connolly, S., McGourty, K., & Newport, D. (2021). The influence of cell elastic modulus on inertial positions in Poiseuille microflows. Biophysical Journal. https://doi.org/10.1016/j.bpj.2021.01.026
Emig, R., Knodt, W., Krussig, M. J., Zgierski-Johnston, C. M., Gorka, O., Groß, O., Kohl, P., Ravens, U., & Peyronnet, R. (2021). Piezo1 Channels Contribute to the Regulation of Human Atrial Fibroblast Mechanical Properties and Matrix Stiffness Sensing. Cells, 10(3), 663. https://doi.org/10.3390/cells10030663
Liu, X., Xia, X., Wang, X., Zhou, J., Sung, L. A., Long, J., Geng, X., Zeng, Z., & Yao, W. (2021). Tropomodulin1 Expression Increases Upon Maturation in Dendritic Cells and Promotes Their Maturation and Immune Functions. Frontiers in Immunology, 0. https://doi.org/10.3389/fimmu.2020.587441
Stem Cells
Hodgkinson, T., Tsimbouri, P. M., Llopis-Hernandez, V., Campsie, P., Scurr, D., Childs, P. G., Phillips, D., Donnelly, S., Wells, J. A., O’Brien, F. J., Salmeron-Sanchez, M., Burgess, K., Alexander, M., Vassalli, M., Oreffo, R. O. C., Reid, S., France, D. J., & Dalby, M. J. (2021). The use of nanovibration to discover specific and potent bioactive metabolites that stimulate osteogenic differentiation in mesenchymal stem cells. Science Advances, 7(9), eabb7921. https://doi.org/10.1126/sciadv.abb7921
Sit, B., Feng, Z., Xanthis, I., Marhuenda, E., Zingaro, S., Shanahan, C., Jones, G. E., Yu, C., & Iskratsch, T. (2021). Matrix stiffness and blood pressure together regulate vascular smooth muscle cell phenotype switching and cofilin dependent podosome formation. BioRxiv, 2020.12.27.424498. https://doi.org/10.1101/2020.12.27.424498
Maurer, M., Perati, S., Johnson, L., Gacita, A. M., Lai, S., Wallrath, L. L., Benjamin, I. J., McNally, E. M., Kirby, T. J., & Lammerding, J. (2021). Impaired lamin localization to the nuclear envelope is responsible for nuclear damage in LMNA mutant iPSC-derived cardiomyocytes (p. 2021.10.30.466591). https://doi.org/10.1101/2021.10.30.466591
Other
Nyga, A., Muñoz, J., Dercksen, S., Fornabaio, G., Uroz, M., Trepat, X., Baum, B., Matthews, H., & Conte, V. (2021). Oncogenic RAS instructs morphological transformation of human epithelia via differential tissue mechanics. BioRxiv, 2021.01.19.427283. https://doi.org/10.1101/2021.01.19.427283
Spheroids & Organoids
Organoids
Ryu, H., Park, Y., Luan, H., Dalgin, G., Jeffris, K., Yoon, H.-J., Chung, T. S., Kim, J. U., Kwak, S. S., Lee, G., Jeong, H., Kim, J., Bai, W., Kim, J., Jung, Y. H., Tryba, A. K., Song, J. W., Huang, Y., Philipson, L. H., … Rogers, J. A. (n.d.). Transparent, Compliant 3D Mesostructures for Precise Evaluation of Mechanical Characteristics of Organoids. Advanced Materials, n/a(n/a), 2100026. https://doi.org/10.1002/adma.202100026
Spheroids
Feijão, T., Neves, M. I., Sousa, A., Torres, A. L., Bidarra, S. J., Orge, I. D., Carvalho, D. T. O., & Barrias, C. C. (2021). Engineering injectable vascularized tissues from the bottom-up: Dynamics of in-gel extra-spheroid dermal tissue assembly. Biomaterials, 279, 121222. https://doi.org/10.1016/j.biomaterials.2021.121222
Bioprinting -(3D)
Kreller, T., Distler, T., Heid, S., Gerth, S., Detsch, R., & Boccaccini, A. R. (2021). Physico-chemical Modification of Gelatine for the Improvement of 3D Printability of Oxidized Alginate-gelatine Hydrogels Towards Cartilage Tissue Engineering. Materials & Design, 109877. https://doi.org/10.1016/j.matdes.2021.109877
Cao, Y., Cheng, P., Sang, S., Xiang, C., An, Y., Wei, X., Yan, Y., & Li, P. (2021). 3D printed PCL/GelMA biphasic scaffold boosts cartilage regeneration using co-culture of mesenchymal stem cells and chondrocytes: In vivo study. Materials & Design, 210, 110065. https://doi.org/10.1016/j.matdes.2021.110065
Gibney, R., Patterson, J., & Ferraris, E. (2021). High-Resolution Bioprinting of Recombinant Human Collagen Type III. Polymers, 13(17), 2973. https://doi.org/10.3390/polym13172973
Neufurth, M., Wang, S., Schröder, H. C., Al-Nawas, B., Wang, X., & Müller, W. E. (2021). 3D bioprinting of tissue units with mesenchymal stem cells, retaining their proliferative and differentiating potential, in polyphosphate-containing bio-ink. Biofabrication. https://doi.org/10.1088/1758-5090/ac3f29
Curious to know more or want to test your samples? Contact us.